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Section One: Calculator-free  35% (52 Marks) 

This section has seven (7) questions. Answer all questions. Write your answers in the 
spaces provided. 
 
Working time for this section is 50 minutes. 
 
 
Question 1 (7 marks) 

Two vectors are given by 9 4 a i j  and 3 4 b i j . Determine 
 
(a) a vector parallel to 𝐚 − 𝐛 of magnitude 25. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) a in terms of d and e, where 3 5 d i j  and 5 2 e i j . (4 marks) 
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Question 2 (7 marks) 

Three vectors are given by 𝐚 = 2𝐢 − 2𝐣, 𝐛 = 𝐢 − 3𝐣 and 𝐜 = 3𝐢 + 𝐣. 
 
Determine 
 
(a) a unit vector d, parallel to 𝐚 + 2𝐛. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) the value(s) of k so that the magnitude of the vector 𝐚 + 𝑘𝐛 is 4. (4 marks) 
 
 
 
  

Solution 

𝐚 + 𝑘𝐛 = ቂ
2 + 𝑘

−2 − 3𝑘
ቃ  

 
Require (2 + 𝑘)ଶ + (−2 − 3𝑘)ଶ = 4ଶ 
 

4 + 4𝑘 + 𝑘ଶ + 4 + 12𝑘 + 9𝑘ଶ − 16 = 0 
10𝑘ଶ + 16𝑘 − 8 = 0 

5𝑘ଶ + 8𝑘 − 4 = 0 
(5𝑘 − 2)(𝑘 + 2) = 0 

𝑘 =
ଶ

ହ
 or 𝑘 = −2 

 
Specific behaviours 

 writes magnitude equation 

 expands and simplifies equation 
 factorises equation 
 states both solutions 

 

Solution 

𝐝 = 𝐚 + 2𝐛 = ቂ
4

−8
ቃ and |𝐝| = √80 = 4√5  

 

𝐝መ =
ଵ

ସ√ହ
ቂ

4
−8

ቃ = ቎

ଵ

√ହ

−
ଶ

√ହ

቏  

 
Specific behaviours 

 calculates 𝐚 + 2𝐛 

 calculates magnitude 
 states unit vector in simplified form 

 



Question 3 (9 marks) 

Consider the matrices 𝐴 = ቂ
2 −3

−2 4
ቃ, 𝐵 = ቂ

−3
2

ቃ, 𝐶 = ቂ
1 0 −1
0 2 −2

ቃ and 𝐷 = [4 −5]. 

 
(a) It is possible to form the product of all four matrices. State the dimensions of the 

resulting product. (2 marks) 
 
 
 
 
 
 
 
 
(b) Determine the matrix 

ଵ

ଶ
𝐷𝐶. (2 marks) 

 
 
 
 
 
 
 
 
 
 
(c) Determine the inverse of matrix A. (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
(d) Clearly show use of matrix algebra to solve the system of equations 2𝑥 − 3𝑦 + 3 = 0 

and 4𝑦 = 2𝑥 + 2. (3 marks) 
 
 
 
 
  

Solution 

𝐴ିଵ =
1

8 − (−6)
ቂ
4 3
2 2

ቃ 

 

= ቂ
2 1.5
1 1

ቃ 

 
Specific behaviours 

 uses determinant 

 determines inverse 
 

Solution 
1

2
× [4 −5] × ቂ

1 0 −1
0 2 −2

ቃ =
1

2
× [4 −10 6] 

 
= [2 −5 3] 

 
Specific behaviours 

 calculates 𝐷𝐶 

 calculates required result 
 

Solution 
𝐴𝐵𝐷𝐶 or 𝐵𝐷𝐴𝐶 are possible, both resulting in a 2 × 3 matrix. 

 
Specific behaviours 

 lists possible product 

 states dimensions of product 

Solution 
2𝑥 − 3𝑦 = −3
−2𝑥 + 4𝑦 = 2

⇒ 𝐴𝑋 = 𝐵, where 𝑋 = ቂ
𝑥
𝑦ቃ 

 

𝑋 = 𝐴ିଵ𝐵 = ቂ
2 1.5
1 1

ቃ ቂ
−3
2

ቃ = ቂ
−3
−1

ቃ  

𝑥 = −3, 𝑦 = −1  
 

Specific behaviours 
 shows system can be written as matrix equation 

 shows pre-multiplication of equation by inverse from (c) 
 states solution of system 

 



Question 4 (7 marks) 

(a) Matrix A represents a rotation of 180º about the origin. Determine 
 

(i) matrix A. (1 mark) 
 
 
 
 
 
 
 
(ii) the exact coordinates of the point (-2, 3) after transformation by matrix A. (1 

mark) 
 
 
 
 
 
 
 
(iii) the determinant of matrix A. (1 mark) 
 
 
 
 
 

 
 

(b) Matrix 
1 0

0 1
B

 
  
 

. Describe the transformation represented by B and calculate its 

determinant. (2 marks) 
 
 
 
 
 
 
 
 
 
(c) Use an example to show that two non-singular square matrices 𝐶 and 𝐷 exist such 

that the determinant of their sum is equal to the sum of their determinants. (2 marks) 
 
 
 
 
 
 
  

1 0

0 1
A

 
   

  

'( , )
1 0 2 2

  2 3
0 1 3 3

A
      

             
  

1 

B is a reflection in the y-axis. 
 
det(𝐵) = −1 

det( ) det( ) .

det( ) .

det( ) det( ) det( ).

If  and  from above, then 1 1 0

2 0
Also,  and 0
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Question 5 (7 marks) 

(a) Solve the equation tan ቀ
௫ାଶହ°

ଶ
ቁ = √3 for 0° ≤ 𝑥 ≤ 540°. (3 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Prove that (1 − cos 𝑥)(1 + sec 𝑥) = sin 𝑥 tan 𝑥. (4 marks) 
 
 
 
 
 
 
  

Solution 

0° ≤ 𝑥 ≤ 540° ⇒ 12.5° ≤
𝑥 + 25

2
≤ 282.5° 

𝑥 + 25°

2
= 60°, 240° 

𝑥 = 95°, 𝑥 = 455° 
 

Specific behaviours 
 uses tan 60° = √3 

 determines first solution 
 determines second solution 

 

Solution 
𝐿𝐻𝑆 = 1 + sec 𝑥 − cos 𝑥 − cos 𝑥 sec 𝑥 

= sec 𝑥 − cos 𝑥 

=
1 − cosଶ 𝑥

cos 𝑥
 

=
sinଶ 𝑥

cos 𝑥
 

= sin 𝑥 tan 𝑥 
= 𝑅𝐻𝑆 

 
Specific behaviours 

 expands and simplifies LHS 

 combines into single fraction 
 uses Pythagorean identity 
 simplifies to RHS 

 



Question 6 (7 marks) 

(a) Sketch the graph of 𝑦 = 2 cosec(𝑥 + 90) for 0 180x    . (3 marks) 
 
 

 
 
 
 
 
(b) Prove the identity cot 𝐴 + tan 𝐴 = sec 𝐴 cosec 𝐴. (4 marks) 
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Question 7 (8 marks) 

(a) Prove that the sum of any three consecutive terms of an arithmetic sequence with 
first term a and common difference d is always a multiple of three, for 𝑎, 𝑑 ∈ ℕ. (3 
marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Use mathematical induction to prove that 7ଶ௡ିଵ + 5 is always divisible by 12, for 𝑛 ∈

ℕ. 
  (5 marks) 
 
 
 
 
 
 

Solution 
Let 𝑓(𝑛) = 7ଶ௡ିଵ + 5, so clearly true when 𝑛 = 1 as 𝑓(1) = 12. 

 
Assume that 𝑓(𝑘) is always true, so that 𝑓(𝑘) = 7ଶ௞ିଵ + 5 = 12𝐼, where I is an 
integer. 
𝑓(𝑘 + 1) = 7ଶ(௞ାଵ)ିଵ + 5 
= 7ଶାଶ௞ିଵ + 5  
= 7ଶ × 7ଶ௞ିଵ + 5 
= 49 × 7ଶ௞ିଵ + 5 
= 48 × 7ଶ௞ିଵ + 7ଶ௞ିଵ + 5 (Using kth case) 
= 48 × 7ଶ௞ିଵ + 12𝐼 
= 12(4 × 7ଶ௞ିଵ + 𝐼) 
 
Since 𝑓(1) is divisible by 12, and it has been shown that if 𝑓(𝑘) is, so is 𝑓(𝑘 + 1), 
then 7ଶ௡ିଵ + 5 is divisible by 12 for all 𝑛 ≥ 1. 
 

Specific behaviours 
 shows true for initial case 

 assumes true for 𝑛 = 𝑘 and equates result to multiple of 12 
 uses index laws to achieve 49 × 7ଶ௞ିଵ + 5 
 factors 12 out of expression 
 makes summary statement 

 

Solution 
Let 𝑇௡ = 𝑎 + (𝑛 − 1)𝑑 so that  

𝑇௡ + 𝑇௡ାଵ + 𝑇(௡ାଶ) = (𝑎 + 𝑛𝑑 − 𝑑) + (𝑎 + 𝑛𝑑) + (𝑎 + 𝑛𝑑 + 𝑑)  
= 3𝑎 + 3𝑛𝑑 = 3(𝑎 + 𝑛𝑑) ⇒ always a multiple of 3 
 

Specific behaviours 
 writes expression for three consecutive terms of arithmetic sequence 

 simplifies expression 
 factors 3 out and states conclusion 

 


